|
|- |- |bgcolor=#e7dcc3|Coxeter-Dynkin diagrams|| |- |bgcolor=#e7dcc3|6-face type|| |- |bgcolor=#e7dcc3|5-face type|| |- |bgcolor=#e7dcc3|4-face type|| |- |bgcolor=#e7dcc3|Cell type|| |- |bgcolor=#e7dcc3|Face type|| |- |bgcolor=#e7dcc3|Face figure|| (octahedron) |- |bgcolor=#e7dcc3|Edge figure||8 (16-cell) |- |bgcolor=#e7dcc3|Vertex figure||64 (6-orthoplex) |- |bgcolor=#e7dcc3|Coxeter group||, () |- |bgcolor=#e7dcc3|Dual||self-dual |- |bgcolor=#e7dcc3|Properties||vertex-transitive, edge-transitive, face-transitive, cell-transitive |} The 6-cube honeycomb or hexeractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 6-space. It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space. == Constructions == There are many different Wythoff constructions of this honeycomb. The most symmetric form is regular, with Schläfli symbol . Another form has two alternating 6-cube facets (like a checkerboard) with Schläfli symbol . The lowest symmetry Wythoff construction has 64 types of facets around each vertex and a prismatic product Schläfli symbol 6. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「6-cubic honeycomb」の詳細全文を読む スポンサード リンク
|